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Abstract

Outline

Background
Scale of current genomic datasets

Stats on number of Biobanks
Stats on UKBB
Stats on growth from HapMap and 1KG for comparison

Focus of paper
Genotyping array data QC, control �ow, and association modeling
Scalability problems with single-node, in-memory tools
Spark

Tutorial
Explain necessary GWAS toolkit operations

Data management (�ltering, merging, etc.)
Liftover
Summary statistics (HWE, AF, call rates, heterozygosity, etc.)
Population strati�cation (IBS + MDS)
Association analysis (logreg, �sher/chisq)
Genetic relatedness

Introduce Marees 2018 paper and explain how tutorial is re-implemented with other tools
Tools

Primary: PLINK, Glow, Hail
Secondary: dask, bigsnpr, scikit-allel, pysnptools/fastlmm

Modin may be worth mentioning, even though out-of-core isn’t really supported
Datasets

HapMap
1KG
3K rice genome

Data Formats
plink, bgen, parquet, Hail MT, vcf, hdf5/npz/zarr
Explain encoding and compression concerns

Results
Code

Figure: �ow chart of Marees analysis
Explain what the resulting code for this project does

Figure: side-by-side comparison of code examples
Primary di�erences:

Hail is an API over opaque data structures and implementations
Glow is simply a convention for representing genetic data in a Spark Dataset, with accompanying methods
PLINK is a gigantic list of parameterized commands for a single-core, single-node CLI

Operation di�erences
Operations that are similarly easy with all 3 toolkits:

call rate �ltering
heterozygosity rate �ltering
HWE �ltering
AF �ltering

LD Pruning: non-existent in Glow, very slow in Hail
However, Glow does support inline calls to PLINK (albeit very awkwardly since PLINK is not streaming software)

Gender imputation: PLINK=automatic, Hail=automatic, Glow=manual
PLINK and Hail both use inbreeding coe�cient on X chromosome data
Glow approach (and Marees 2018) look at homozygosity rate on X instead

Liftover
Not available in PLINK
Hail supports coordinate liftover only (not variant liftover)

Requires a chain �le for the destination reference genome
Glow supports both coordinate liftover and variant liftover

Requires a chain �le and a reference fasta for the destination genome
see the notebook at https://glow.readthedocs.io/en/latest/etl/lift-over.html for speci�cation of chain and reference �les

PCA for population strati�cation: simple in PLINK and Hail, non-existent in Glow
Usability:

Extending and learning algorithms from Glow source code is the easiest of all tools
Hail documentation is fairly thorough, though essentially no examples or answers are available outside of that documentation (or the
discourse)
PLINK examples and documentation are both very extensive and easily found, however few PLINK work�ows don’t also include the need for
some scripting language in the same pipeline for interpreting/visualizing results (those outputs are then often used to parameterize other
PLINK commands, as exempli�ed by the tutorials in the project)
There are many ways to do the same thing in Hail and it is di�cult to know which method to choose (cf. https://discuss.hail.is/t/issues-with-
sample-and-variant-qc-by-group/1286/5)

Data
Figure: File Format Comparison

Show comparison of �le sizes by dataset and format
Performance

Figure: Times for operations by dataset and toolkit
Touch on vectorization support in breeze (some ops use jni to LAPACK, but simpler ones like sums do not) as compared to numpy
Explain bene�ts of bitpacking (modify 1KG dask nb to have step without GeneticBitPacking �lter and compare to original)

Discussion
Computational operations needed in GWAS analyses (see “Computational Operations” in notes)

This may be a good place to characterize all operations and what matrix functions support them



Notes

UKBB

UKB Genotyping and Imputation Data Release March 2018 – FAQ
Imputed call set is 2.1T bgen
Measured call set is 92G bed

DETAILS AND CONSIDERATIONS OF THE UK BIOBANK GWAS
“Starting from the 487,409 individuals with phased and imputed genotype data, we �ltered down to 337,199 QC positive individuals”
“We have run 1513 unique phenotypes”
“Over 92 million imputed autosomal SNPs were available for analysis. As of this writing, over half of these SNPs were undergoing re-imputation by
the UK Biobank team due to mapping issues, leaving the ~40 autosomal million SNPs imputed from the Haplotype Reference Consortium as
eligible for analysis. We further restricted to SNPs with minor allele frequency (MAF) > 0.1% and HWE p-value > 1e-10 in the 337,199 QC positive
individuals, an INFO score > 0.8 (directly from UK Biobank), leaving 10.8 million SNPs for analysis.”

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100314
Genotypes and imputation therefrom for 488,000 participants
Exome sequences for 50,000 participants
Whole genome sequences for 50 participants

Quality control guide: http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web-1.pdf
UK Biobank team uses PLINK (for 1KG mostly), shell�sh, and �ashPCA for QC that is then used by NealeLab
This guide is about QC for interm release of 150k samples

Results in 152k samples by 806k variants
SNP QC is �rst performed only on European cohort

Using a homogeneous cohort is ideal just for initial SNP �lters
SNPs are �ltered based on heterozygosity (adjusted by regression using cohort since heterozygosity di�ers so much), missingness, and HWE
QC is done for each SNP in 4.8k sample batches (matching A�ymetrix batches) so a SNP can fail QC in one batch and become all missing
SNP QC also done using ROH which is sequential heterozygous call rates
Sample QC adjusts for gender (�nds .1% are wrong – has interesting aneuploidy �gure)

GPU Acceleration
Epistatic Interactions

SHEsisEpi, a GPU-enhanced genome-wide SNP-SNP interaction scanning algorithm, e�ciently reveals the risk genetic epistasis in bipolar disorder
1000× faster than PLINK: Combined FPGA and GPU accelerators for logistic regression-based detection of epistasis

Uses reparameterization of Newton’s method in PLINK to make interaction model much faster to solve
IBS/IBD

PlinkGPU: A Framework for GPU Acceleration of Whole Genome Data Analysis
Ports pairwise IBS distance calculation in PLINK to GPU using block-wise calculations
Summary of PLINK capabilities:

Data management (�ltering, merging, etc.)
Summary statistics (HWE, AF, call rates, heterozygosity, etc.)
Population strati�cation (IBS + MDS)
Association analysis (logreg, �sher/chisq)
Genetic relatedness

Exome Sequencing Stats
The ~50k individuals were called using GATK in joint analysis work�ow, which produces gVCF for each sample for a cohort-wide calling to create the
�nal “joint” result (source)

The joint results (“project level variant data” as they call it) is 100G PLINK
Sample level variant call data is ~5TB gVCF
Sample level aligned sequence data is ~50TB CRAM
The cited paper within states that there are ~9.6M variants in the �nal call set, with 4.7M in targeted regions (Table 2)

LMM

Dealing with related samples in GWAS via lasso (much like LMMs do):
A LASSO penalized regression approach for genome-wide association analyses using related individuals: application to the Genetic Analysis
Workshop 19 simulated data (2016)

“Ignoring relatedness between study participants can have signi�cant impact on the study results and increase false positive rates”
“Because of the computational intensity involved in the estimation of the parameters of the LMM, most methods perform single marker
analysis”
“Lately, least absolute shrinkage and selection operator (LASSO) regression [6] has attracted attention as an alternative tool for selecting the
most promising SNPs in GWAS”
“Currently, all LASSO methods used in GWAS assume that the sample members are unrelated to each other.”
One approach to dealing with this in lasso multivariant SNP regression is to:

Fit null model with GRM as covariance and then �t lasso to residuals
This makes the samples independent

The method requires a GRM
The model adds an L1 penalty to the standard LMM likelihood with a 0 mean and GRM based covariance random e�ect
Shows that SNPs way more SNPs are identi�ed (non-zero beta) than via univariate methods but that those identi�ed are NOT accurate

Ecosystem Tools

bigsnpr
https://prive�.github.io/bigsnpr/articles/demo.html
Supports PLINK and UKBB BGEN reading
E�cient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr
bigstatsr is related but more generic library for out-of-core matrix ops, PCA, and linear models
Supports imputation using custom XGBoost model as well as wrappers for calls out to PLINK + Beagle

FaST-LMM
From 2011 Nature Methods paper FaST linear mixed models for genome-wide association studies
PySnpTools

https://fastlmm.github.io/PySnpTools/#snpreader-snpreader
Can read and write PLINK bed/ped data (it appears to be designed speci�cally for working e�ciently with PLINK data)

http://www.ukbiobank.ac.uk/wp-content/uploads/2018/03/UKB-Genotyping-and-Imputation-Data-Release-FAQ-v3-2-1.pdf
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas
https://www.nature.com/articles/cr201068
https://www.sciencedirect.com/science/article/abs/pii/S1877750318310184
https://pdfs.semanticscholar.org/06b5/0d092e4b9753a1419d680997b8398437af3c.pdf
https://www.ukbiobank.ac.uk/wp-content/uploads/2019/08/UKB-50k-Exome-Sequencing-Data-Release-July-2019-FAQs.pdf
https://www.biorxiv.org/content/10.1101/572347v1.full.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133525/
https://github.com/privefl/bigsnpr
https://academic.oup.com/bioinformatics/article/34/16/2781/4956666
https://cran.r-project.org/web/packages/bigstatsr/index.html
https://github.com/fastlmm/FaST-LMM/
https://www.nature.com/articles/nmeth.1681
https://github.com/fastlmm/PySnpTools


Supports “DistributedBed” �les with chunked PLINK datasets
Supports slicing of PLINK datasets (i.e. random IO)
Supports IO with npz, hdf5, and memmap �les
Has e�cient c++ reader/writer implementations

scikit-allel

In memory EDA for genotyping data

Supports vcf, plink,

Has vcf_to_{npz,zarr,recarray} methods

Represents genotype calls as 3D uint8 arrays

GenotypeArray > This class represents data on discrete genotype calls as a 3-dimensional numpy array of integers. By convention the �rst
dimension corresponds to the variants genotyped, the second dimension corresponds to the samples genotyped, and the third dimension
corresponds to the ploidy of the samples.

Each integer within the array corresponds to an allele index, where 0 is the reference allele, 1 is the �rst alternate allele, 2 is the second alternate
allele, … and -1 (or any other negative integer) is a missing allele call. A single byte integer dtype (int8) can represent up to 127 distinct alleles,
which is usually su�cient. The actual alleles (i.e., the alternate nucleotide sequences) and the physical positions of the variants within the
genome of an organism are stored in separate arrays, discussed elsewhere.

In many cases the number of distinct alleles for each variant is small, e.g., less than 10, or even 2 (all variants are biallelic). In these cases a
genotype array is not the most compact way of storing genotype data in memory. This class de�nes functions for bit-packing diploid genotype
calls into single bytes, and for transforming genotype arrays into sparse matrices, which can assist in cases where memory usage needs to be
minimised. Note however that these more compact representations do not allow the same �exibility in terms of using numpy universal
functions to access and manipulate data.

Supports bitpacking by collapsing the ploidy dimension (axis=2) into a single byte using 4 bits for each uint8

Phasing is supported by assuming the ordering in the ploidy dimension has meaning: > If the genotype calls are unphased then the ordering of
alleles along the third (ploidy) dimension is arbitrary

http://alimanfoo.github.io/2016/06/10/scikit-allel-tour.html > The scikit-allel genotype array convention is �exible, allowing for multiallelic and
polyploid genotype calls. However, it is not very compact, requiring 2 bytes of memory for each call. A set of calls for 10,000,000 SNPs in 1,000
samples thus requires 20G of memory.

One option to work with large arrays is to use bit-packing, i.e., to pack two or more items of data into a single byte. E.g., this is what the plink BED
format does. If you have have diploid calls that are only ever biallelic, then it is possible to �t 4 genotype calls into a single byte. This is 8 times
smaller than the NumPy unpacked representation.

However, coding against bit-packed data is not very convenient. Also, there are several libraries available for Python which allow N-dimensional
arrays to be stored using compression: h5py, bcolz and zarr. Genotype data is usually extremely compressible due to sparsity - most calls are
homozygous ref, i.e., (0, 0), so there are a lot of zeros.

Dependent Projects:

https://github.com/kern-lab/ReLERNN
https://github.com/kern-lab/ReLERNN
Predicts recombination rate along the genome using mutation rates (in vcf) or allele frequencies
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msaa038/5741419
Uses vcf_to_hdf5 (source)
Uses VariantChunkedTable and GenotypeChunkedArray as out-of-core inputs for RNN prediction (source)

https://github.com/kern-lab/locator
Predict geographic origin from genomic sequence
Uses scikit-allel to construct model inputs, nothing more

https://github.com/hardingnj/xpclr
Using rogers_hu�_r for LD estimation
Using utility methods like “is_non_segregating”, “is_singleton”, “count_alleles”, and “compress” (source)

https://github.com/ornl-oxford/genben
scikit-allel benchmarks library
Using scikit-allel PCA (source)

https://github.com/Gregor-Mendel-Institute/SNPmatch
Using allel.sequence_diversity

https://github.com/SaundersLab/FieldPathogenomics
All by https://github.com/dnlbunting
https://�eldpathogenomics.readthedocs.io/en/latest/
Using ChunkedDaskGenotypeArray and allel VariantTable as part of phylogenetic tree pipeline (source)
Uses locate_unlinked as part of STRUCTURE implementation (source)
Using rogers_hu�_r LD estimation

SNPRelate
List of functions
Authors also created gdsfmt, which is the data structure they use within the library

This is basically an R version of zarr, not a genetics-speci�c �le format
They also created SeqArray

This is for whole exome/genome sequencing data
It is an extension to GDS

Benchmarks show the uniprocessor implementations of PCA and identity-by-descent are ∼8–50 times faster than the implementations provided in
the popular EIGENSTRAT (v3.0) and PLINK (v1.07) programs, respectively, and can be sped up to 30–300-fold by using eight cores

https://scikit-allel.readthedocs.io/en/stable/
https://scikit-allel.readthedocs.io/en/v0.4.0/model.html#genotypearray
https://github.com/kern-lab/ReLERNN/blob/f0315d76096766f503301226ff1481a7766cb467/ReLERNN/manager.py#L88
https://github.com/kern-lab/ReLERNN/blob/261be79222b39855f2e5fb9579aea5d3ef8b3d74/ReLERNN/ReLERNN_PREDICT
https://github.com/hardingnj/xpclr/blob/dc470638161a01593da3d545ddec3b7ab6c7baf9/bin/xpclr#L138
https://github.com/ornl-oxford/genben/blob/e5f64376de8bd6c57b7fa87f378451a464c4f438/genben/core.py
https://github.com/SaundersLab/FieldPathogenomics/blob/ba98a38e95dc2b5a2618cb161e3e31feba06e0fe/fieldpathogenomics/pipelines/Tree.py#L50
https://github.com/SaundersLab/FieldPathogenomics/blob/ba98a38e95dc2b5a2618cb161e3e31feba06e0fe/fieldpathogenomics/pipelines/Structure.py#L222
http://github.com/zhengxwen/SNPRelate
http://bioconductor.org/packages/release/bioc/vignettes/SNPRelate/inst/doc/SNPRelate.html#function-list
http://bioconductor.org/packages/release/bioc/vignettes/gdsfmt/inst/doc/gdsfmt.html
http://bioconductor.org/packages/release/bioc/vignettes/SeqArray/inst/doc/SeqArrayTutorial.html


tutorials: http://bioconductor.org/packages/release/bioc/vignettes/SNPRelate/inst/doc/SNPRelate.html
These cover:

LD pruning
PCA
Fst estimation (�xation index)

This is some statistic that summarizes population structure (given two or more populations as inputs)
Higher Fst means that the population is more di�erentiated than one with lower Fst (source)
Compare to scikit-allele Fst Estimation
From wikipedia:

“The values range from 0 to 1. A zero value implies complete panmixis; that is, that the two populations are interbreeding freely. A
value of one implies that all genetic variation is explained by the population structure, and that the two populations do not share any
genetic diversity”

Kinship estimation
IBD PLINK
IBD Maximum Likelihood
KING method of moments

IBS
Uses MDS over IBS matrix to show population clustering

http://bioconductor.org/packages/release/bioc/html/SNPRelate.html
KING

https://github.com/zhengxwen/SNPRelate/blob/master/src/genKING.cpp
Has c++ implementations of King homo (population homogeneity) and King robust (provides robust relationship inference in the presence of
population substructure)

IBD (PLINK port it seems)
https://www.rdocumentation.org/packages/SNPRelate/versions/1.6.4/topics/snpgdsPairIBD
https://github.com/zhengxwen/SNPRelate/blob/master/R/IBD.R
https://github.com/zhengxwen/SNPRelate/blob/ac01cbaca760228def7342261d7eed5e8bdbcd20/src/genIBS.cpp#L556

LD pruning
https://github.com/zhengxwen/SNPRelate/blob/master/src/genLD.cpp

LD pruning

https://hail.is/docs/0.1/hail.VariantDataset.html#hail.VariantDataset.ld_prune
Hail discussions on ld prune implementation:

https://discuss.hail.is/t/ld-prune-implementation-in-0-1/244
https://dev.hail.is/t/seeking-some-input-on-current-implementation-of-ld-prune-method/78/11

Hail 0.2 implementation (https://hail.is/docs/0.2/_modules/hail/methods/statgen.html#ld_prune)
Local LD prune implementation: https://github.com/hail-is/hail/blob/master/hail/src/main/scala/is/hail/methods/LocalLDPrune.scala#L227
Summary of Hail 0.2 implementation:

A greedy strategy �rst prunes using double loop for all variants in a single partition and considers only R2 (no MAF) so the choice is arbitrary
This is what is ultimately returned, though everything that follows is intended to identify correlated variants spanning partitions that need to
be removed

Next, a giant BlockMatrix multiplication with its transpose used to get R2 across all partitions
This matrix is than sparsi�ed based on row intervals (see sparsify_row_intervals)
The matrix is collapsed to entries in processed further as (variant i, variant j, r2)
Variants above the r2 threshold are kept are kept and fed into a maximally independent set �nder

MIS is done in memory on a single machine (see Graph.scala)
The �nal set of variants to remove is �ltered out of the result from step 1

Operations needed to recreate this:
Matrix transpose + multiplication

This is how the LD calculation works
Matrix + vector subtraction with broadcasting and element-wise matrix multiplication

The sparsi�cation of the LD matrix is done by determining which variants are within some number of bp from each other
This is done in a custom Scala routine, but it could also be expressed as a subtraction of genomic positions to create a mask matrix
The mask matrix could then be multiplied by the LD matrix to get the correct banding

Matrix enumeration (rows, cols, or entries)
In the Hail case, enumeration is used to collapse a sparse LD matrix, �lter it per entry, build a list of graph edges, and then run a custom scala
routine to �nd maximal independent sets
If Privé’s clumping was used instead, there is a way to express everything with per calculations on the sparsi�ed LD matrix along with
distributed sorting and �ltering (having an upfront “importance” metric to sort by makes it much easier to do without any single-node
algorithm bottlenecks)

https://www.cog-genomics.org/plink/1.9/ld
Actual pseudo code from C Chang on how ld pruning works (2015):

https://groups.google.com/d/msg/plink2-users/w5TuZo2fgsQ/WbNnE16_xDIJ
location of ld_prune for PLINK 1.9: https://github.com/chrchang/plink-ng/blob/master/1.9/plink_ld.c
An earlier conversation (2014) on the ld pruning implementation:

https://groups.google.com/forum/#!topic/plink2-users/wlSG51SdbFE
This suggests the old algorithm was di�erent and marked snps for some kind of greedy selection

In PLINK:
(PLINK 1.07) https://wlz0726.github.io/2017/05/27/LD-prune-with-plink/

a. consider a window of 50 SNPs
b. calculate LD between each pair of SNPs in the window
b. remove one of a pair of SNPs if the LD is greater than 0.5
c. shift the window 5 SNPs forward and repeat the procedure

How to make PLINK use scores other than MAF: see here
--read-freq  is the opportune param

Other methods:
SNPrune

Fast, very domain-speci�c technique for �nding highly correlated variants (LD >= .99)
Maximal independent set notes

https://www.uwyo.edu/dbmcd/popecol/maylects/popgengloss.html
http://alimanfoo.github.io/2015/09/21/estimating-fst.html
https://en.wikipedia.org/wiki/Fixation_index
https://hail.is/docs/0.2/linalg/hail.linalg.BlockMatrix.html#hail.linalg.BlockMatrix.sparsify_row_intervals
https://github.com/hail-is/hail/blob/master/hail/src/main/scala/is/hail/utils/Graph.scala
https://github.com/hail-is/hail/blob/820d3adf99884087c9e9b24d51dacc7dd1408d88/hail/src/main/scala/is/hail/utils/Graph.scala#L49
https://privefl.github.io/bigsnpr/articles/pruning-vs-clumping.html
https://groups.google.com/forum/#!topic/plink2-users/FSAF_36tIEs
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-018-0404-z?


From paper on Luby algorithm (https://www.cs.utah.edu/~hari/teaching/bigdata/SICOM86-LubyM-
Parallel.Algorithm.Graph.Maximal.Independent.Set.pdf)

This is commonly cited
“The obvious sequential algorithm for the MIS problem can be simply stated as: Initialize I to the empty set; for 1, , n, if vertex is not adjacent to
any vertex in I then add vertex, to I. The MIS output by this algorithm is called the lexicographically �rst maximal independent set (LFMIS).”

This is the PLINK algorithm (if all MAFs are the same)
“Valiant [Va] noted that the MIS problem, which has such an easy sequential algorithm, may be one of the problems for which there is no fast
parallel algorithm.”

This paper in Algorithm 1 describes the LFMIS algorithm well
http://people.cs.georgetown.edu/~j�neman/papers/greedymis.pdf

Blelloch’s iterative algorithm (parallel) describes LD pruning well where the dependency structure in the sequential selection problem is very
shallow (due to the windows)

https://arxiv.org/pdf/1202.3205.pdf
“Luby’s randomized algorithm [17] … can be converted to run in linear work. The problem, however, is that on a modest number of processors it
is very hard for these parallel algorithms to outperform the very simple and fast sequential greedy algorithm. Furthermore the parallel
algorithms give di�erent results than the sequential algorithm”

Blelloch citers:
https://www.semanticscholar.org/paper/A-High-Quality-and-Fast-Maximal-Independent-Set-for-Burtscher-
Devale/5e4866a895eb947eaf6f0ecd0556e83745630b54
Tight Analysis of Parallel Randomized Greedy MIS mentioned by Blelloch in Theoretically E�cient Parallel Graph Algorithms Can Be Fast and
Scalable as the most recent work improving on his bounds that the number of iterations is O(log n) rather than O(log^2 n)

Parallel algorithms for the maximal independent set problem in graphs
“The greedy sequential algorithm to compute a MIS loops over the vertices according to the given order, adding them to the resulting set only if
no previous neighboring vertex has been added.”
“If this structure is shallow (has a polylogarithmic depth), then running each of the iterates in parallel, while respecting the dependencies,leads
to an e�cient parallel implementation that mimics the sequential algorithm. The depth of this dependance structure is called the dependence
length”

MIS on GPU presentation
Paper: A High-Quality and Fast Maximal Independent Set Implementation for GPUs

E�ects of LD pruning on downstream analysis
Sensitivity analysis with LD pruning for epistasis screening: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558841/

PCA

Projecting samples using pre-computed PCs
Hail does not have this but McArthur lab has examples (see discourse post and linked code)

On how loadings can be used to identify poor PCA results
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912642/
“Correlated SNPs will therefore have high loadings, because correlated random variables can generate linear combinations with high variability. As
we demonstrate, the net e�ect is to give higher weight to groups of correlated SNPs, although there is little reason to believe that such SNPs will
perform well in di�erentiating among subpopulations. An intermediate goal, therefore, is to eliminate the distorting e�ect of the redundant
information provided by groups of highly correlated SNP genotypes.”

HWE normalization
https://doc.goldenhelix.com/SVS/latest/svsmanual/ftParts/pca.html#formulas-for-pca-normalization-of-genotypic-data
Explained in Population Structure and Eigenanalysis

Identifying outlier SNPs in loadings
Peaks in loadings may indicate LD structure captured by PCA
A Practical Approach to Adjusting for Population Strati�cation in Genome-wide Association Studies: Principal Components And Propensity Scores
(PCAPS)

“Most importantly, patterns of local linkage disequilibrium (LD) may cause PCA to create “nuisance axes”, which may be interpreted as the
existence of subpopulations that re�ect localized LD phenomena rather than plausible PS (Zou et al. 2010)"

They may also indicate natural selection underway within multiple populations
pcadapt: an R package to perform genome scans for selection based on principal component analysis
Regresses PCs against each SNP to see which SNPs aren’t explained by PCA
“The �rst statistic based on PCA was the communality statistic, which measures the percentage of variation of a single nucleotide polymorphism
(SNP) explained by the �rst K principal components”

One interpretation appears to be that SNPs not captured by PCs may represent selection
Detecting Genomic Signatures of Natural Selection with Principal Component Analysis: Application to the 1000 Genomes Data

From Population Structure and Eigenanalysis: - De�nes a test for stating whether population structure exists in a bi-allelic dataset - Also gives a test to
answer the question “Does the data show evidence of additional population structure over and above what has already been detected?”
Types of population structure (Li et al. 2010)

Discrete
Admixed
Hierarchical

PCA Loadings
Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication (vonHoldt 2010)

Uses small numbers of highly ranked SNPs (by loading) to uniquely de�ne genetic di�erences between dogs and grey wolves (supplemental
table 2)

Phylogenetic Analysis
See Jombart et al. 2010 (ppca which uses PCA and clustering to identify ancestry

Scaling
Approximate truncated SVD: O(mnk) (k = rank)
Randomized truncated SVD: (mn log(k))
From https://arxiv.org/pdf/0909.4061.pdf (via https://discourse.related.vc/t/pca-implementations/224)

“A standard deterministic technique for computing an approximate SVD is to perform a rank-revealing QR factorization of the matrix, and then
to manipulate the factors to obtain the �nal decomposition. The cost of this approach is typically O(kmn)”
“For a dense input matrix, randomized algorithms require O(mn log(k)) �oating-point operations (�ops) in contrast with O(mnk) for classical
algorithms”

Kinship Estimation

https://arxiv.org/pdf/1707.05124.pdf
https://arxiv.org/pdf/1805.05208.pdf
https://pdfs.semanticscholar.org/a9ea/412e2a9a963dcf494710bd1e75cfd481d36a.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7286-martin-burtscher-a-high-quality-and-fast-maximal-independent-set-algorithm-for-gpus.pdf
https://userweb.cs.txstate.edu/~mb92/papers/topc18.pdf
https://discuss.hail.is/t/pca-to-output-allele-frequencies-alongside-loadings/439/6
https://github.com/macarthur-lab/gnomad_hail/blob/537cb9dd19c4a854a9ec7f29e552129081598399/utils/generic.py#L105
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1713260/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475581/
https://www.ncbi.nlm.nih.gov/pubmed/27601374
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776707/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1713260/
https://academic.oup.com/bioinformatics/article/26/6/798/244373
https://www.nature.com/articles/nature08837
https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-11-94
https://rdrr.io/cran/adephylo/man/ppca.html
https://en.wikipedia.org/wiki/Coefficient_of_relationship#Kinship_coefficient


The methods below are all essentially di�erent estimators for the exact same statistic, a kinship coe�cient (often denoted as phi_hat)
KING PropIBD
Hail pc_relate “kin”
Hail identity_by_descent “PI_HAT”
PLINK –genome PI_HAT (as in KING, this is P(IBD2) + .5 * P(IBD1))
PLINK –make-rel (for GRM), Hail GRM/RRM, and GCTA

According to the PC-Relate paper and Goudet 2018, these are all actually estimating the same thing as summed IBD probabilities
PC-Relate also de�nes the the GRM as: “The entries in this GRM measure the genotype correlations for pairs of individuals”
Side note: This assertion, that the GRM estimator (which is a correlation in [-1, 1]) is asymptotically equal to IBD probability sharing (a probability
in [0, 1]) was unexpected for me, but de�nitely helpful to keep in mind when trying to parse the intention of all these di�erent methods.

Appendix A (Empirical Genetic Relationship Matrix) shows this proof along with the disclaimer that it is only true in a homogeneous
population

Summary of PC-AiR and PC-Relate from GENESIS package:
https://www.bioconductor.org/packages/release/bioc/vignettes/GENESIS/inst/doc/pcair.html#principal-components-analysis-in-related-samples-pc-air
Summary table of methods with the population characteristics they support unbiased estimation with:

Estimator LD Pop Structure Recent Admixture

GRM (Hail/PLINK)

IBD (Hail/PLINK)

KING X X

PC-Relate (Hail) X X X

These characteristics above are di�cult to account for because they create so many circular dependences; for example:
GRM/IBD require homogeneous populations but to get these from a sample with mixed ancestry a method like PCA must be used which is most
e�ective when related individuals are removed (which you can’t do without GRM/IBD)
PC-Relate also has this issue, and tries to overcome it by running KING as a �rst pass before running PCA and then producing structure-adjusted
kinship estimates (though the Hail implementation seems to just ignore that initial step)

The kinship coe�cient is sometimes referred to as the coe�cient of ancestry; this should not be confused with coancestry coe�cient which increases
when there are more distant common ancestors

The GRM estimator of coe�cient is equal (asymptotically) to the real kinship coe�cient + coe�cient of ancestry - some function of recent
coancestry (see PC-Relate paper)

This helps to understand the relationship between the GRM estimator and population structure – values are in�ated when such structure exists
Related quantities with trivial transformations to and from kinship coe�cient (phi_hat)

Coe�cient of inbreeding
Equal to 2 * phi_hat - 1

Coe�cient of relationship
Equal to 2 * phi_hat

KING
Should be run with rare and correlated variants
“Please do not prune or �lter any”good" SNPs that pass QC prior to any KING inference, unless the number of variants is too many to �t the
computer memory, e.g., > 100,000,000 as in a WGS study, in which case rare variants can be �ltered out. LD pruning is not recommended in KING."

Hail pc_relate
Gnomad v2 QC

“Relatedness �ltering for this release was done very similarly to the 2.0.2 release. The only di�erence is that instead of using KING, we used the
pc_relate method in Hail to infer relatedness”

Gnomad v3 QC
“We used Hail pc_relate to compute relatedness, followed by Hail maximal_independent_set in order to select as many samples as possible, while
still avoiding including any pairs of �rst and second degree relatives”
Application of pc_relate is here

PC-Relate
Summary

Many initial methods for relatedness do not account for population structure including:
Kinship coe�cients
The –make-rel method in PLINK
PLINK cites GCTA as having the de�nition for relatedness, so presumably that also su�ers from this
The method used in Hail GRM and RRM (which uses the same GCTA de�nition)

KING can handle distinct populations but breaks down when there is recent admixture in the immediate ancestry of a pair of samples
i.e. If you have perfectly pure subpopulations there are no problems, but if two siblings have a European and Asian parent, it stops working

PC-Relate can handle recent and distant relatedness
The same authors developed PC-AiR

PC-Relate uses this to get an initial set of PCs that are then regressed against genotype calls for individuals
Predictions from this model are then used to create allele frequencies used in the usual GRM formula

“Existing approaches for the estimation of frequently used measures of recent genetic relatedness, such as kinship coe�cients and identity by
descent (IBD) sharing probabilities, have limitations in the presence of population structure”
“For example, a variety of maximum likelihood and method of moments estimators have been developed for relatedness inference from genotype
data under a strong assumption of sampling from a single population with no underlying ancestral diversity. In samples with population
strati�cation, these methods that assume population homogeneity have been shown to give extremely biased estimates of recent genetic
relatedness.”
“The widely used KING-robust method11 has been developed for inference on close pedigree relationships under an assumption of sampling from
ancestrally distinct subpopulations with no admixture. However, KING-robust gives biased relatedness estimates for pairs of individuals who have
di�erent ancestry, which can result in incorrect relationship inference for relatives with admixed ancestry.”
The section “Convolution of Recent and Distant Genetic Relatedness” de�nes the GRM formula (same as used in Hail/PLINK)
“A widely used empirical genetic relationship matrix (GRM) has been proposed for inference on population structure (distant genetic relatedness) in
samples without close relatives, as well as inference on recent kinship and heritability estimation of complex traits in samples derived from a single
population”
Recent vs Distant genetic relatedness

From PC-Relate Presentation

https://en.wikipedia.org/wiki/Coefficient_of_relationship#Kinship_coefficient
https://www.ncbi.nlm.nih.gov/pubmed/20926424
https://en.wikipedia.org/wiki/Malecot%27s_method_of_coancestry
https://en.wikipedia.org/wiki/Coefficient_of_inbreeding
https://en.wikipedia.org/wiki/Coefficient_of_relationship#Coefficient_of_relationship
http://people.virginia.edu/~wc9c/KING/manual.html
https://hail.is/docs/0.2/methods/genetics.html?highlight=identity_by_descent#hail.methods.pc_relate
https://macarthurlab.org/2018/10/17/gnomad-v2-1/
https://macarthurlab.org/2019/10/16/gnomad-v3-0/
https://github.com/macarthur-lab/gnomad_qc/blob/master/gnomad_qc/v3/sample_qc/sample_qc.py#L424
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716688/
http://www.biostat.washington.edu/sites/default/files/modules/TOPMED_RELATEDNESS_INFERENCE_Module12_2018.pdf


Distinguishing familial relatedness from population structure using genotype data is di�cult, as both manifest as genetic similarity through
the sharing of alleles.
It is important to note that relatedness and ancestry are a continuum
On KING: “A limitation of the method is that it gives biased kinship estimates for individuals with di�erent ancestry, including close relatives
who are admixed.”

The GRM calculation is asymptotically equal to kinship coe�cient (see right after Equation 2)
PC-Relate in Hail

https://github.com/hail-is/hail/issues/3490
This thread talks the PC relate implementation and issues with it

PC-AiR uses KING to get an initial unrelated set but “Hail’s version of pc-relate does not identify an initial set of related and unrelated
individuals. The R pcrelate implementation (the o�cial / reference implementation by the authors of the paper) does this to identify a set of
individuals on which to run the principal components analysis. It is not entirely clear to me why this is necessary, and we don’t currently have
a mechanism for doing so (since pc_relate is our mechanism for determining related and unrelated individuals when there is population
structure in the data set). If you have prior knowledge about related samples, you might try �ltering to an known unrelated set and
computing the scores from that set. I’m curious if that makes any di�erence in the results.”
“Speci�cally, PCA is better run after �rst removing related individuals which is problematic as this is the method that should determine if
they’re related in the �rst place”
“A longer term solution is to simply implement PC-AiR in hail. I skimmed the implementation section of the paper earlier this week and it
looks very straightforward. It seems to boil down to using the KING estimator to estimate relatedness, compute PCA on unrelated individuals,
project related individuals into unrelated PC space. Finally, we can use pc_relate to improve on our original estimates of relatedness from
KING.”

https://dev.hail.is/t/linear-algebra-syntax-example-pc-relate/131
This has a helpful discussion on matrix operations needed for pc_relate

PLINK
See https://www.cog-genomics.org/plink/1.9/distance (Relationship/covariance)

--make-rel  is realized relationship matrix (presumably same as Hail RRM) and cites GCTA: A Tool for Genome-wide Complex Trait Analysis as
the reference implementation (this paper has the formula in the Hail docs)

PI_HAT from --genome  is kinship coe�cient estimator
Homogeneous population requirement

From original PLINK paper:
“In homogeneous samples, PLINK provides options to estimate genomewide IBD-sharing coe�cients between seemingly unrelated
individuals from whole-genome data”

From v1.07 docs:
“As mentioned above, the IBD estimation part of this analysis relies on the sample being reasonably homogeneous – otherwise, the estimates
will be biased (i.e. individuals within the same strata will show too much apparent IBD)”

Description of PLINK IBS (not IBD) implementation:
https://arxiv.org/pdf/1410.4803.pdf
This has a good pseudocode description in “Improvements in PLINK 1.9”

The calculation loops through every possible sample pair and for each variant for that pair, increments IBS{0,1,2} based on comparison of
calls

Description of PLINK IBD implementation:
https://www.biorxiv.org/content/10.1101/103325v1.full.pdf
“PLINK computes for each pair of individuals an IBS score and uses a hidden Markov Model (HMM) method to �nd IBDs. The hidden IBD state is
estimated by the computed IBS sharing and genome-wide level of relatedness. PLINK is slow because even the �rst step of computing all IBS
scores requires O(n^2) operations for n samples.”

Papers with good intro surveys of kinship estimation
How to estimate kinship

Mentions VanRaden 2008 as �rst publication with GRM estimator
“The kinship, or coancestry, coe�cient θ jj′ for individuals j and j′ is de�ned here as the average of the four ibd probabilities for one allele from
each individual”

Quickly identifying identical and closely related subjects in large databases using genotype data
“The maximum-likelihood estimators always generate biologically meaningful probabilities and are usually more accurate than the method-of-
moment estimators. However, maximum-likelihood approaches are usually slower and sometimes more biased than the method-of-moment
ones. Method-of-moment methods usually use the observed numbers of IBS sharing loci instead of the predicted numbers when calculating IBD
sharing probabilities, and hence may yield estimates that cannot be interpreted as probabilities, in which case, researchers truncate the
estimates into the meaningful range [0, 1]. The truncation of the results introduces arti�cial e�ects and biases.”
This paper cites PLINK as one of the method-of-moments estimators (rather than maximum likelihood)

E�cient Estimation of Realized Kinship from Single Nucleotide Polymorphism Genotypes
2017
Says that “pedigree kinship” is what all “realized kinship” methods are trying to estimate (the former is a deterministic function of the true
pedigree)
Explains “realized kinship” estimation methods like PLINK, GRM, and many variants in paragraph 4 of intro
The paper simulates data from 1KG using ibd_create of MORGAN software
Table 1 is a terri�c summary of why GRM estimates are so much worse than IBD via method of moments or MLE

Interestingly, it also includes the self-reported pedigree data
Comparisons of methods

GRM vs RRM
The only di�erence is that variants are divided by binomial variance (which assumes HWE) in the GRM calculation while they are divided instead
by the emprical variance in the RRM

RRM vs Pearson correlation
They are the same except that the denominator in the RRM standardization is multiplied by the number of variants (not sure why)

GRM vs IBD from method of moments (PLINK) or MLE
First, they are the same in expectation
However, the GRM estimates have much higher variance (Wang et al. 2017)

Using imputed variants to inform kinship estimation
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007021

UK Biobank
According to Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models:

147k people are related in UKB and only 18k have a documented relationship

https://hail.is/docs/0.2/methods/genetics.html?highlight=genetic_relatedness#hail.methods.realized_relationship_matrix
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014363/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950838/
http://zzz.bwh.harvard.edu/plink/ibdibs.shtml
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220858/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469481/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340323
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340323/
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008766#pgen.1008766.e070


Ascertainment bias

SNP arrays are designed using an “ascertainment sample” and it is this sample that determines what SNPs make it onto the array
As these SNPs are often �ltered to only this with AF in a certain range, it is possible for many rarer variants in such a small sample to be ignored
(ascertainment bias)
There are ways to try to adjust for this, but it is not possible when the “ascertainment sample” does not match the ancestry of the “typed sample” (the
one an experiment is being run on)

From Population genetic analysis of ascertained SNP data (Nielson 2004):
“In cases where there is little or no overlap between the ethnicities of the individuals included in the typed sample and the ascertainment
samples, however, corrections can only be made in parametric models describing the genetic relationship between the populations. In such
cases, it will typically be di�cult or impossible to use classical non-parametric methods for statistical inference.”

Positive Selection Statistics

Selective Sweep
Occurs when a bene�cial mutation becomes �xed (AF of 1) and causes nearby mutations to become �xed as well even if they don’t confer some
bene�t

Generally, speaking these statistics and methods characterize the selective pressure related to an allele in a population
Homozygosity and linkage disequilibrium

Haplotype homozygosity - the probability of selecting two identical haplotypes at random from a population
This is di�erent from genotype homozygosity in that:

It is de�ned by two loci instead of one (though you could still think of it in terms of two haplotypes from the same person at the same loci)
It seems to only consider when the allele is present (i.e. “homozygous alternate” is what this term refers to)
For example, for two SNPs with some number of alleles each (not necessarily 2), the probability of of identical haplotypes selected at random is
the product of the AF for each (not the product of AF for both present + product of 1-AF for each)

See �gure 1 for this de�nition
Haplotype Homozygosity and Derived Alleles in the Human Genome

Common LD statistics like D’ and r2 do not di�erentiate between the alleles at a single locus
This means that it doesn’t matter if the allele is present or absent, only that it correlates with others

On gauging the age of an allele in a population subject to POSITIVE selection:
A new allele from a mutation will start on a single haplotype
Over time, LD between this allele and those nearby will decay (from recombination)
This “decay in LD” is “stopwatch by which its age can be estimated”

NOTE: This kind of method may be useful for characterizing when a protective allele for a disease arose
A Map of Recent Positive Selection in the Human Genome

De�nes iHS (integrated haplotype score)
Authors state that a “selection map” of ongoing sweeps in the human genome are an important genome annotation that should be considered in
GWAS studies
in scikit-allele: allel.ihs
Builds on extended haplotype homozygosity (EHH)

“The EHH measures the decay of identity, as a function of distance, of haplotypes that carry a speci�ed “core” allele at one end"
Figure 1B is the best explanation of why haplotype homozygosity is more informative than LD estimates

It allows comparing an ancestral and derived allele in terms of LD around them
This works by starting with a “core” allele (one of interest) and moving to adjacent alleles one at a time, with increasing distance, and
determining haplotype homozygosity with each

For a derived allele undergoing positive selection, you should see that the homozygosity decreases more slowly (i.e. LD is higher) as distance
increases
This is because presumably the derived allele is causing the others to be inherited together more often

Properties of iHS:
“The iHS at each SNP measures the strength of evidence for selection acting at or near that SNP”
“The iHS is constructed to have an approximately standard normal distribution and hence the sizes of iHS signals from di�erent SNPs are
directly comparable regardless of the allele frequencies at those SNPs”
“it does not provide a formal signi�cance test”
Controls for recombination rate using “LD patterns and the estimated genetic distances”
Has better power than “Fay and Wu’s H, and Tajima’s D” (cf. allel.moving_delta_tajima_d)

Calculation:
“iHS is computed for every SNP with minor allele frequency > 5%, treating each SNP in turn as a core SNP”

Inference:
As an example, the authors mention that alleles favoring lighter skin in Europeans are undergoing positive selection
Similar examples are shown for reproductive cell �tness, metabolism, and neurological attributes

WGS/WES Operations

Hail
Splitting multi-allelic variants using common HTS (high-throughput seqeuencing) �elds: split_multi_hts

Requires the following entry �elds, some of which are transformed in the downcoded biallelic variant results:

struct { 
  GT: call, 
  AD: array<int32>, 
  DP: int32, 
  GQ: int32, 
  PL: array<int32>, 
  PGT: call, 
  PID: str 
}

Long Range LD

From bigsnpr.clumping.R: Long-Range LD Can Confound Genome Scans in Admixed Populations.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525085/
https://en.wikipedia.org/wiki/Selective_sweep
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462072/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474085
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1382018/
https://scikit-allel.readthedocs.io/en/stable/stats/selection.html#allel.ihs
https://scikit-allel.readthedocs.io/en/stable/_modules/allel/stats/selection.html#moving_delta_tajima_d
https://hail.is/docs/0.2/methods/genetics.html?highlight=transmission#hail.methods.split_multi_hts
https://github.com/privefl/bigsnpr/blob/master/R/clumping.R


File Formats

BGEN
BGEN: a binary �le format for imputed genotype and haplotype data
https://www.cog-genomics.org/plink/2.0/formats#bgen
https://www.well.ox.ac.uk/~gav/bgen_format/
https://www.well.ox.ac.uk/~gav/bgen_format/spec/latest.html

SIMD and Native Libraries

Hail uses breeze (https://github.com/hail-
is/hail/blob/de2968e0bf9215e058b1fbace4ae618cc93463fe/hail/src/main/scala/is/hail/expr/ir/BlockMatrixIR.scala)
Breeze uses netlib-java which is a wrapper for BLAS/LAPACK/ARPACK (https://github.com/scalanlp/breeze/wiki/Breeze-Linear-Algebra#performance)

Breeze uses LAPACK for some ops like svd but not others like sum
Sums along an exist apparently don’t exist in LAPACK (see this post)
Matrix multiplication (DenseMatrixOps) seems to use BLAS though

Hail says atlas should be installed for native linear algebra: https://hail.is/docs/0.2/getting_started.html#blas-and-lapack
SIMD support doesn’t really seem to exist in spark 2.x, or at least this jira ticket states that companies are hacking this functionality in now (3.x might
have it)
A decent explanation of the relationship between breeze and LAPACK/BLAS: http://izmailo�.github.io/ml/neural-network-from-scratch-in-scala/
On Atlas vs BLAS vs LAPACK: “ATLAS is a portable reasonably good implementation of the BLAS interfaces, that also implements a few of the most
commonly used LAPACK operations.”
An OpenJDK vector API seems like it would provide SIMD op access, though it is still incubating as of JDK13 (example)
Good overview of vectorization in Spark: https://www.waitingforcode.com/apache-spark-sql/vectorized-operations-apache-spark-sql/read
Atlas vs OpenBLAS vs MKL

default linux blas & lapack are signi�cantly slower than the others, with MKL being slightly better than openBlas and Atlas
Checking numpy/scipy blas

See: https://stackover�ow.com/questions/37184618/�nd-out-if-which-blas-library-is-used-by-numpy/37190672

ldd /opt/conda/envs/hail/lib/python3.7/site-packages/numpy/core/_multiarray_umath.cpython-37m-x86_64-linux-gnu.so 
> libcblas.so.3 => /opt/conda/envs/hail/lib/python3.7/site-packages/numpy/core/../../../../libcblas.so.3 
(0x00007f0b737e1000) 
readlink -e /opt/conda/envs/hail/lib/python3.7/site-packages/numpy/core/../../../../libcblas.so.3 
> /opt/conda/envs/hail/lib/libopenblasp-r0.3.7.so

np.__con�g__.show() gives paths to MKL used at build, but actual binaries are linked to openblas
This may �x it: https://github.com/conda-forge/numpy-feedstock/issues/153

Add blas=*=openblas  and conda-forge::numpy  to environment.yaml
For scipy:

ldd /opt/conda/envs/hail/lib/python3.7/site-packages/scipy/linalg/_fblas.cpython-37m-x86_64-linux-gnu.so 
>> libopenblasp-r0-2ecf47d5.3.7.dev.so => /opt/conda/envs/hail/lib/python3.7/site-
packages/scipy/linalg/../.libs/libopenblasp-r0-2ecf47d5.3.7.dev.so (0x00007f13d0f56000)

Hardy Weinberg Equilibrium

Hail implementation:
hardyWeinbergTest
LeveneHaldane
See this PDF on an explanation of the distribution and the implementation: https://hail.is/docs/0.2/LeveneHaldane.pdf

“The implementation is based on Wigginton et al. (2005).”
Has same reference as SNPRelate

SNPRelate implementation
Code: https://github.com/zhengxwen/SNPRelate/blob/87a9f253b73cb4f86f5a480d6a225a50b9c3326d/src/genHWE.cpp
This is based on “Wigginton, JE, Cutler, DJ, and Abecasis, GR (2005) A Note on Exact Tests of Hardy-Weinberg Equilibrium”

A Note on Exact Tests of Hardy-Weinberg Equilibrium (2005)
Semantic Scholar

982 citations
Shows poor performance of chi-square tests vs exact test
“The principles and procedures used for testing HWE are well established (Levene 1949; Haldane 1954; Hernandez and Weir 1989; Wellek 2004),
but the lack of a publicly available, e�cient, and reliable implementation for exact tests has led many scientists to rely on asymptotic tests that can
perform poorly with realistic sample sizes.”
Code for C/C++ and R are available at http://csg.sph.umich.edu/abecasis/Exact/index.html

Genepop
Python (part of biopython)
Has Fst, HWE, LD, and allele frequency calculations
Also has “migration” and “Fis” statistics (not sure what those are)
Has “Isolation By Distance (IBD)”

Firth Tests

Hail: https://github.com/hail-
is/hail/blob/e2c7a5421dee8bbee90a6749e5a5eb1f580de2d5/hail/src/main/scala/is/hail/stats/LogisticRegressionModel.scala
Glow:
https://github.com/projectglow/glow/blob/dfb69e33cad6b103197319d3eefe66a6c31e062f/core/src/main/scala/io/projectglow/sql/expressions/FirthTes

C/G and A/T SNPs

https://www.biorxiv.org/content/10.1101/308296v1.full.pdf
https://github.com/scalanlp/breeze/blob/6b14f1ae0fdc8cb7e2d23286e727dcff72177ef5/math/src/main/scala/breeze/linalg/functions/svd.scala
https://github.com/scalanlp/breeze/blob/6b14f1ae0fdc8cb7e2d23286e727dcff72177ef5/math/src/main/scala/breeze/linalg/functions/sum.scala
https://stackoverflow.com/questions/26766799/what-is-the-corresponding-lapack-function-behind-matlab-suma-2-in-which-a-is
https://github.com/scalanlp/breeze/blob/6b14f1ae0fdc8cb7e2d23286e727dcff72177ef5/math/src/main/scala/breeze/linalg/operators/DenseMatrixOps.scala#L21
https://issues.apache.org/jira/browse/SPARK-27396?jql=project%20%3D%20SPARK%20AND%20text%20~%20%22simd%22%20ORDER%20BY%20priority%20DESC%2C%20updated%20DESC
https://stackoverflow.com/questions/17858104/what-is-the-relation-between-blas-lapack-and-atlas
http://cr.openjdk.java.net/~kkharbas/vector-api/CSR/javadoc.02/jdk.incubator.vector/jdk/incubator/vector/package-summary.html
http://markus-beuckelmann.de/blog/boosting-numpy-blas.html
https://github.com/hail-is/hail/blob/e2c7a5421dee8bbee90a6749e5a5eb1f580de2d5/hail/src/main/scala/is/hail/stats/package.scala#L109
https://github.com/hail-is/hail/blob/1225a6c838c15230de07c1c562f7e6e0f255e7c4/hail/src/main/scala/is/hail/stats/LeveneHaldane.scala#L10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199378/#RF1
https://www.semanticscholar.org/paper/A-note-on-exact-tests-of-Hardy-Weinberg-Wigginton-Cutler/f7bb8b20c217c81cb446b0bd9c3f6b187de80b6c
https://biopython.org/wiki/PopGen_Genepop


This QC step is common because the probe sequence on genotyping arrays is not speci�c to a reference genome, by design. This means that the
genotyping data can tell you that an “A” nucleotide was present at a locus but it doesn’t actually know if this nucleotide represents some kind of
“variant” with respect to a larger population. The probes are chosen such that they capture individual sites of common variation but deciding which
nucleotides comprise heterozygous, homozygous ref, homozygous alt genotypes (i.e. make a call) is up to the user. For any given site, the arrays
capture multiple individual nucleotides so one way to do this independent of a reference genome, for a single dataset, is to simply assume that
whatever nucleotide is less common is the minor (aka alternate) allele and the other is the major (aka reference) allele. This is an acceptable (and very
common) method for analyzing a single dataset but causes obvious problems when trying to compare calls for the same variants between datasets (a
nucleotide may have been the alternate in one and reference in the other). Two strategies for making datasets comparable then are:
1. For each dataset, use knowledge of the probe sequences to determine what strand each nucleotide is on. This appears to be the only completely

unambiguous way to ensure that all calls correspond to the same reference and alternate nucleotides.
2. Use the fact that the SNP arrays at least tell you which nucleotides were measured for each locus to infer, in a fairly quick and dirty way, which

strand the probes measured in each dataset. Here are some examples to make this more clear. Let Dataset 1 = D1 and Dataset 2 = D2 in each of
these and assume each determine major/minor aka ref/alt alleles based on frequency (where “AC” implies A was designated as the major allele and
C as the minor):

Example 1 (AC vs CA): D1 says a variant has A as the major allele and C as the minor allele. D2 says C is major and A is minor
Correction: For all calls in D2 for this variant, switch the homozygous/heterozygous interpretation (presumably the C allele was more
common in D2 but not D1)

Example 2 (AC vs TG): D1 says variant has A = major, C = minor and D2 says T = major, G = minor
Correction: Nothing for the calls. The probes in this case were for di�erent strands but ultimately captured the same nucleotides (since A is
complementary with T and C with G) AND assumed the same major/minor relationship. The allele nucleotides in D2 should be complemented
so that the variant is known as AC, but that’s it.

Example 3 (AC vs GT)
Correction: As a combination of example 1 and 2, the call interpretation and allele nucleotides should both be swapped in D2 to align with
D1.

Example 4 (AT vs TA)
This is where things get tricky. In example 2, we knew that the probes measured di�erent strands simply because A or C nucleotides would
be on one strand while T and G nucleotides would be on the other. This de�nitive knowledge of a strand swap is key. In the AT vs TA case, it
could be that the probe measured di�erent strands or it could be that the same strand was used but alleles occurred at di�erent frequencies
in both datasets. We could now say something like, “If the A allele has a frequency of 5% in D1 and it has a frequency of ~5% in D2, then we
can safely assume that the same strand was used for the probe”. This, however, becomes problematic as the allele frequencies 50%. The
same is true for cases like CG vs GC or even AT vs AT – you simply can’t tell which strand the probes corresponded too without knowledge of
the probe seqeuences. These sequences could be compared between the two datasets to determine if they were for the same strand, but
they appear to be di�cult to come by. This is the main reason why many analyses simply through out A/T and C/G SNPs.

Here are some helpful discussions/papers on why this step is necessary (and on strand ambiguity in general):
StrandScript: evaluation of Illumina genotyping array design and strand correction > Additionally, the strand issue can be resolved by comparing
the alleles to a reference genome. Yet, when two alleles of the SNPs are complementary (A/T or C/G), the true strand remains undetermined. The
only absolute solution to determine the strand is to compare the probe sequences to a reference genome, providing the probe sequences is
correct
Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration > However, there are two major
challenges to be resolved: … 2) the ambiguous A/T and G/C single nucleotide polymorphisms (SNPs) for which the strand is not obvious. For many
statistical analyses, such as meta-analyses of GWAS and genotype imputation, it is vital that the datasets to be used are aligned to the same
genomic strand.
Is ‘forward’ the same as ‘plus’?… and other adventures in SNP allele nomenclature

bigsnpr/bigstatsr

In trying to understand how the loadings plots were generated in https://prive�.github.io/bigsnpr/articles/how-to-PCA.html, I found these useful
source links:

loadings plot function: https://github.com/prive�/bigstatsr/blob/810347dfdbc7b625f0c2907e45e111764c47da8c/R/plot.R#L158
big_randomSVD: https://github.com/prive�/bigstatsr/blob/master/R/randomSVD.R#L189
what big_randomSVD calls: https://github.com/prive�/bigstatsr/blob/master/R/randomSVD.R#L105
where big_SVD class is de�ned: https://github.com/prive�/bigstatsr/blob/c859ad28d9c6f8c8cc365c3315e3abbb81e128a8/R/SVD.R#L92

Association Analysis

Nealelab original gwas uses linear regression for ALL phenotypes (binary, ordinal, or continuous)
See: http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas
“Model misspeci�cation: While normally distributed quantitative traits are suited for linear regression models, binary traits are better suited to a
logistic model, and the linear assumptions can create biases in the beta coe�cients and signi�cance, which we address below.”

Quick reviews of recent LMM papers: https://discourse.related.vc/t/linear-mixed-models-for-gwas/271
Bolt-LMM

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342297/
Bolt-LMM is notable for not requiring guassian priors on all SNP e�ects

It is di�cult (maybe impossible?) to do this in a frequentist framework and still get p-values
It is possible though, to make a model of any form (bayesian in this case), subtract predictions from outcomes to get residuals, and then create
test statistics using these residuals

This “provides a bridge between Bayesian modeling for phenotype prediction and the frequentist association testing framework”
The idea of not requiring guassian priors is also viewed as supporting non-in�nitesimal genetic architecture

in�nitesimal architecture means that all e�ects are non-zero
The actual bolt-LMM model is based on Polygenic Modeling with Bayesian Sparse Linear Mixed Models which is a guassian mixture model with one
proportion parameter dictating which gaussian normal e�ects are not exactly 0

Side note: “Methods” in this paper has useful notes on centering/scaling conventions
Background on standard association models (i.e. variance component model)

This, like Regenie, states that the genetic random term is really just a product of the genotype matrix times a vector of random coe�cients (most
formulations appeal directly to the GRM – which is still needed in a REML solution)

BGENIE
https://jmarchini.org/bgenie/
This is closed source but apparently includes ways for expression multiple phenotype regression solutions as matrix operations (rather than
separate regressions):

“BGENIE uses the Eigen matrix library and OpenMP to carry out as many of the linear algebra operations in parallel as possible. For example,
estimation of e�ect sizes of large numbers of SNPs can be carried out in parallel using matrix operations, and indexing of missing data values is

https://www.ncbi.nlm.nih.gov/pubmed/28402386
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307387/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099125/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567190/


used to allow for fast estimation of standard errors.”
REGENIE

https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2.full.pdf
Methods

See “Whole genome linear regression”
Purpose of projection matrix applied to both phenotype and genotypes: “Covariates e�ects are removed from both the trait and the genotypes”

While not mentioned in the paper, the formula for this, PX = IN − X(XTX)^−1XT, is a common method in REML for removing mean e�ects from
a problem so that variance components can be estimated in an unbiased way

See: https://people.csail.mit.edu/xiuming/docs/tutorials/reml.pdf (Section 2.1 The Theory)
That formula is one of many possible “error contrasts” (I’ve seen it elsewhere too so it is apparently a common choice)
MLE for both betas and variance results in biased variance estimate
Using an orthogonal error contrast results in an optimization for variance params that do not involve betas (the orthogonality means
that A^TX becomes 0 so A^TXB becomes 0)
A solution for the variance components is then plugged into the standard weighted LS solution for betas

Removing the covariate e�ects from the phenotype is also a common performance optimization (FaST-LMM/Bolt/SAIGE all do it) since it
means that when doing each individual variant association test, you do not need to include the covariates in the regression (other than the
variant being tested)

From Bolt: “We assume for now that all have been mean-centered and there are no covariates; we treat covariates by projecting them
out from both genotypes and phenotypes, which is equivalent to including them as �xed e�ects”

See supplementary note 1.1.1 for more details on that (with comparison to GCTA-LOCO)
This mentions that the e�ective sample size (dof) decreases from N to N-C where C is the number of covariates used

Other references on this:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695771/

This shows the same X(XTX)^−1XT adjustment as the projection (a derivation is in appendix)
This also shows how to solve simultaneous single covariate regressions (after projection)
It mentions how to calculate standard errors and p-values given the projected covariates
It references https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348564/ which also discusses how projection loses a degree of
freedom (with a single covariate)

QC
See “UK Biobank data set” section
The SNP set used to create null models was very di�erent from the set used in association analysis

The SNPs for association were restricted to about 11M imputed variants
Filters: (MAF > 0.5% or MAC > 5) and annotated as functional (not sure what that means, but probably VEP consequences)

The set used for building polygenic models used these �lters:
MAF >= 1%
HWE p <= 10^-15
call rate > 99%
LD pruning with R2 of .9 (why so high?) and �xed window of 1k markers with 100 marker step

Removing sample correlation
It is possible to use an RRM to remove correlation between samples prior to doing a standard linear regression

See https://www.ebi.ac.uk/sites/ebi.ac.uk/�les/shared/documents/phdtheses/Casale-Thesis.pdf
Section 2.3.3 touches on this brie�y

The Grid-LMM paper methods equation 2 + 3 also show how Cholesky decomposition of a sample covariance matrix can be used to transform
the original model into one solvable by �xed e�ect linear regression

Dask

Arrays created from numpy arrays in memory have all their contents hashed (so this is unexpectedly slow)
See: https://github.com/dask/dask/issues/3946#issuecomment-418568246
Arrays from �les are assigned a name based on �lename, modi�cation time, etc.

Canines

From Boxer bares all (2005)
“All domestic dogs are descended from grey wolves (C. lupus) that were tamed about 15,000 years ago”
“Today, researchers published the full genetic code of a 12-year-old boxer named Tasha”
The actual publication on the �rst full genome is Genome sequence, comparative analysis and haplotype structure of the domestic dog.

Nature Link
From Genome sequence, comparative analysis and haplotype structure of the domestic dog

On choosing a boxer: “This particular animal was chosen for sequencing because it had the lowest heterozygosity rate among ∼120 dogs tested at
a limited set of loci; subsequent analysis showed that the genome-wide heterozygosity rate in this boxer is not substantially di�erent from other
breeds (Parker 2004)”

The “subsequent analysis” is Parker, H. G. et al. Genetic structure of the purebred domestic dog

TODO

Consider using OpenBLAS and MKL for perf testing since Chris Chang mentioned that it can really improve PCA performance

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383949/
https://www.nature.com/articles/news051205-6
https://www.ncbi.nlm.nih.gov/pubmed/16341006
https://www.nature.com/articles/nature04338/
https://www.nature.com/articles/nature04338/
https://www.ncbi.nlm.nih.gov/pubmed/15155949
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